Identification

Title

Spatial analysis to quantify numerical model bias and dependence: How many climate models are there?

Abstract

A limited number of complex numerical models that simulate the Earth's atmosphere, ocean, and land processes are the primary tool to study how climate may change over the next century due to anthropogenic emissions of greenhouse gases. A standard assumption is that these climate models are random samples from a distribution of possible models centered around the true climate. This implies that agreement with observations and the predictive skill of climate models will improve as more models are added to an average of the models. In this article we present a statistical methodology to quantify whether climate models are indeed unbiased and whether and where model biases are correlated across models. We consider the stimulated mean state and the simulated trend over the period 1970-1999 for Northern Hemisphere summer and winter temperature. The key to the statistical analysis is a spatial model for the bias of each climate model and the use of kernel smoothing to estimate the correlations of biases across different climate models. The spatial model is particularly important to determine statistical significance of the estimated correlation under the hypothesis of independent climate models. Our results suggest that most of the climate model bias patterns are indeed correlated. In particular, climate models developed by the same institution have highly correlated biases. Also, somewhat surprisingly, we find evidence that the model skills for simulating the mean climate and simulating the warming trends are not strongly related.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d79k4ctm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2008 Authors.An edited version of this article was published by the American Statistical Association.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:25:46.789809

Metadata language

eng; USA