Identification

Title

Assessing urban heat-related adaptation strategies under multiple futures for a major U.S. city

Abstract

Urban areas are increasingly affected by extreme heat in the face of climate change, while the size and vulnerability of exposed populations are shifting due to economic development, demographic change, and urbanization. In addition to the need to assess future urban heat-related health risks, there is also an increasing need to design adaptation strategies that will be effective under varying levels of socioeconomic development and climate change. We use the case study of Houston, Texas, to develop and demonstrate a scenario-based approach to explore the effectiveness of both autonomous and planned heat-related adaptations under multiple plausible futures. We couple a heat risk model with urban climate projections (under the Representative Concentration Pathways) and vulnerability projections (under locally extended Shared Socioeconomic Pathways) to investigate the impact of different adaptation strategies under multiple scenario combinations. We demonstrate that, in the context of Houston, community-based adaptation strategies aiming to reduce social isolation are the most effective and the least challenging to implement across all plausible futures. Scenario-based approaches can provide local policymakers with context-specific assessments of possible adaptation strategies that account for uncertain futures.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d732008b

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-02-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:30:03.476102

Metadata language

eng; USA