Identification

Title

Modeling the day-to-day variability of midnight Equatorial Plasma Bubbles with SAMI3/SD‐WACCM‐X

Abstract

It is well-known that equatorial plasma bubbles (EPBs) are highly correlated to the post-sunset rise of the ionosphere on a climatological basis. However, when proceeding to the daily EPB development, what controls the day-to-day/longitudinal variability of EPBs remains a puzzle. In this study, we investigate the underlying physics responsible for the day-to-day/longitudinal variability of EPBs using the Sami3 is A Model of the Ionosphere (SAMI3) and the Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension (SD-WACCM-X). Simulation results on October 20, 22, and 24, 2020 were presented. SAMI3/SD-WACCM-X self-consistently generated midnight EPBs on October 20 and 24, displaying irregular and regular spatial distributions, respectively. However, EPBs are absent on October 22. We investigate the role of gravity waves on upwelling growth and EPB development and discuss how gravity waves contribute to the distributions of EPBs. We found the westward wind associated with solar terminator waves and gravity waves induces polarization electric fields that map to the equatorial ionosphere from higher latitudes, resulting in midnight vertical drift enhancement and retrograde plasma flow. The upward vertical drift and retrograde flow further lead to shear flow instability and midnight plasma vortex, creating background conditions identical to the post-sunset ionosphere. This provides conditions favorable for the upwelling growth and EPB development. The converging and diverging winds associated with solar terminator waves and midnight temperature maximum also affect the longitudinal distribution of EPBs. The absence of EPBs on October 22 is related to the weak westward wind associated with solar terminator waves.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cj8jfj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union (AGU).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:10.375722

Metadata language

eng; USA