Identification

Title

Improvements to melting snow behavior in a bulk microphysics scheme

Abstract

Snow falling into a melting layer will eventually consist of a fraction of meltwater and hence change its characteristics in terms of size, shape, density and fall speed. Most microphysical parameterizations in numerical weather prediction models typically only represent purely solid or liquid hydrometeors. Generally, this has been an acceptable compromise since the melting layer is typically very shallow and adding a mixed solid/liquid particle type would result in increased computational time. This research shows how improvements were made to the treatment of melting snow in a microphysical parameterization within the Weather Research and Forecasting (WRF) model by implementing an approximation of snowflake melted fraction together with a physically based expression for melting particle terminal velocity. In addition, the more appropriate definition of melting level defined by the wet-bulb temperature was consistently used in various process rates, all while not adding additional prognostic variables that would add computational cost. Multiple events observed during the 2015-2016 Olympic Mountain Experiment (OLYMPEX) were used to compare with the WRF model results. The modified scheme is able to represent disdrometer observations of joint particle size and fall velocity during wet snow events, as well as fall velocity profiles through the melting layer derived from a vertically-pointing radar. The improved scheme removes 'bulls' eyes' of snow accumulation in lee-side areas within the melting zone, and should result in better predictions of surface precipitation phase and amount.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7ks6vx2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:15:42.420979

Metadata language

eng; USA