Identification

Title

Effective vertical diffusion by atmospheric gravity waves

Abstract

Quantification of heat and constituent transport by gravity waves (GWs) in global models is challenging due to limited model resolutions. Current parameterization schemes suffer from oversimplification and often underestimate the transport rate. In this study, a new approach is explored to quantify the effective vertical eddy diffusion by using a high-resolution Whole Atmosphere Community Climate Model (WACCM) simulation based on scale invariance. The WACCM simulation can partially resolve the mesoscale GW spectrum down to 250 km horizontal wavelength, and the heat flux and the effective vertical eddy diffusion by these waves are calculated directly. The effective vertical diffusion by the smaller-scale, unresolved waves, is then deduced based on scale invariance, following the method outlined by H.-L. Liu (2019) in quantifying GW momentum flux and forcing. The effective vertical diffusion obtained is generally larger than that obtained from parameterizations, and is comparable with that derived from observations in the mesosphere and lower thermosphere region.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kh0rpn

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-01-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:14:33.960517

Metadata language

eng; USA