Identification

Title

Emission and evolution of submicron organic aerosol in smoke from wildfires in the western United States

Abstract

Despite increasing incidence of wildfires in the United States, wildfire smoke is poorly characterized, with little known about particle composition and emission rates. Chemistry in transported plumes confounds interpretation of ground and aircraft data, but near-field observations can potentially disentangle the effects of oxidation and dilution on aerosol mass and chemical composition. We report the organic aerosol (OA) emission ratios from aircraft observations near the fire source for the 20 wildfires sampled during the Western Wildfire Experiment: Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) study of summer 2018. We observe no changes in submicron nonrefractory OA mass concentration, relative to CO which accounts for simple dilution, between 0.5 and up to 8 h of aging. However, static OA excess mixing ratios hide shifts in the aerosol chemical composition that suggest near-balanced, simultaneous oxidation-driven condensation and dilution-driven evaporation. Specifically, we observe significant increases in the extent of oxidation, evident by an increase in oxidation marker f44 and loss of the biomass burning marker f60, as the smoke ages through chemistry and dilution. We discuss the competing effects of oxidative chemistry and dilution-driven evaporation on the evolution of the chemical composition of aerosols in wildfire smoke over time.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cz39zm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Chemical Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:08:48.057846

Metadata language

eng; USA