Identification

Title

Improving the analog ensemble wind speed forecasts for rare events

Abstract

An analog-based ensemble technique, the analog ensemble (AnEn), has been applied successfully to generate probabilistic predictions of meteorological variables, wind and solar power, energy demand, and the optimal bidding in the day-ahead energy market. The AnEn method uses a historical time series of past forecasts from a meteorological model or other prediction systems and observations of the quantity to be predicted. For each forecast lead time, the ensemble set of predictions is a set of observations from the past. These observations are those concurrent with the past forecasts at the same lead time, chosen across the past runs most similar to the current forecast. Recent applications have demonstrated that the AnEn introduces a conditional negative bias when predicting events in the right tail of the forecast distribution of wind speed, particularly when the training dataset is short. This underestimation increases when the predicted event occurs less frequently in the available historical data. A new bias correction for the AnEn using wind observations from more than 500 U.S. stations is tested to reduce the AnEn's underestimation of rare events. It is shown that the conditional negative bias introduced by the AnEn in its standard application is significantly reduced by our novel approach. Also, the overall probabilistic AnEn performances improve when predicting wind speed higher than 10 m s(-1) as demonstrated by lower values of the continuous ranked probability score. These improvements can be attributed to an increased reliability achieved by introducing the proposed bias correction algorithm.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7br8w86

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:08:50.434994

Metadata language

eng; USA