Identification

Title

Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere

Abstract

A number of recent studies have highlighted the observational evidence for a coupling between atmospheric tides in the thermosphere and the electron density structure of the ionosphere. The most commonly proposed mechanism to explain this is an electrodynamic coupling between tides at E region altitudes and ion drifts at F region altitudes. However, based on both the observational evidence from recent satellite missions such as those of the neutral winds associated with nonmigrating tides at F region altitudes, and considering the theoretical effects of atmospheric tides on the thermosphere and ionosphere, more than one coupling mechanism must be considered. We use Sami2 is Another Model of the Ionosphere to test a set of electrodynamic and chemical-dynamical coupling mechanisms that could explain the link between tides in the thermosphere and the low-latitude ionosphere. We investigate the possible role of the vertical drifts during the both the day and around sunset, perturbations to the thermospheric neutral density and thermospheric [O]/[N2], and tidal winds at F region altitudes. These simulations give an estimate of the sensitivity of the nighttime ionosphere to each of these coupling mechanisms. We then compare the results of these sensitivity tests with the effects of atmospheric tides on different thermospheric parameters as simulated by a self-consistent model of the atmosphere-ionosphere-electrodynamic system (thermosphere-ionosphere-mesosphere-electrodynamics general circulation model). This comparison shows that in addition to the E region dynamo modulation, the potential coupling between tides and the ionosphere via changes in thermospheric [O]/[N₂], meridional winds at F region altitudes, and modification of the vertical drifts around sunset could play an important role and all require further study, both with models and new observations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7445mzn

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-05-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:25:52.427030

Metadata language

eng; USA