Identification

Title

Contribution of meteorological downscaling to skill and precision of seasonal drought forecasts

Abstract

Research in meteorological prediction on subseasonal to seasonal (S2S) time scales has seen growth in recent years. Concurrent with this growth, demand for seasonal drought forecasting has risen. While there is obvious synergy between these fields, S2S meteorological forecasting has typically focused on low-resolution global models, whereas the development of drought can be sensitive to the local expression of weather anomalies and their interaction with local surface properties and processes. This suggests that downscaling might play an important role in the application of meteorological S2S forecasts to skillful forecasting of drought. Here, we apply the generalized analog regression downscaling (GARD) algorithm to downscale meteorological hindcasts from the NASA Goddard Earth Observing System global S2S forecast system. Downscaled meteorological fields are then applied to drive offline simulations with the Catchment Land Surface Model to forecast U.S. Drought Monitor-style drought indicators derived from simulated surface hydrology variables. We compare the representation of drought in these downscaled hindcasts with hindcasts that are not downscaled, using the North American Land Data Assimilation System Phase 2 (NLDAS-2) dataset as an observational reference. We find that downscaling using GARD improves hindcasts of temperature and temperature anomalies but that the results for precipitation are mixed and generally small. Overall, GARD downscaling led to improved hindcast skill for total drought across the contiguous United States, and improvements were greatest for extreme (D3) and exceptional (D4) drought categories.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7571gjf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:34:42.079102

Metadata language

eng; USA