Identification

Title

A Hybrid Dynamical‐Statistical Model for Advancing Subseasonal Tropical Cyclone Prediction Over the Western North Pacific

Abstract

Tropical cyclone (TC) genesis prediction at the extended-range to subseasonal timescale (a week to several weeks) is a gap between weather and climate predictions. The current dynamical prediction systems and statistical models show limited skills in TC genesis forecasting at the lead time of 1-3 weeks. A hybrid dynamical-statistical model is developed that reveals capability in predicting basin-wide TC frequency in every 10-day period over the western North Pacific at a 25-day forecast lead, which is superior to the statistical and dynamical model-based predictions examined in this study. In this hybrid model, the cyclogenesis counts for different TC clusters are predicted, respectively, using the statistical models in which the large-scale predictors associated with intraseasonal oscillation evolutions are provided by a dynamical model. A probabilistic map of TC tracks at the subseasonal timescale is further predicted by incorporating the climatological probability of track distributions of these TC clusters.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qz2f81

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-10-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:24.207347

Metadata language

eng; USA