Environmental drivers of coccolithophore growth in the Pacific sector of the Southern Ocean
The Great Calcite Belt (GCB) is a band of high concentrations of suspended particulate inorganic carbon (PIC) spanning the subantarctic Southern Ocean and plays an important role in the global carbon cycle. The key limiting factors controlling coccolithophore growth supporting this high PIC have not yet been well-characterized in the remote Pacific sector, the lowest PIC but largest area of the GCB. Here, we present in situ physical and biogeochemical measurements along 150 degrees W from January to February 2021, where a coccolithophore bloom occurred. In both months, PIC was elevated in the Subantarctic Zone (SAZ), where nitrate was >1 mu M and temperatures were similar to 13 degrees C in January and similar to 14 degrees C in February, consistent with conditions previously associated with optimal coccolithophore growth potential. The highest PIC was associated with a relatively narrow temperature range that increased about 1 degrees C between occupations. A fresher water mass had been transported to the 150 degrees W meridian between occupations, and altimetry-informed Lagrangian backtracking estimates show that most of this water was likely transported from the southeast within the SAZ. Applying the observations in a coccolithophore growth model for both January and February, we show that the similar to 1.7 degrees C increase in temperature can explain the rise in PIC between occupations.
document
https://n2t.org/ark:/85065/d7td9z4h
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2023-11-09T00:00:00Z
Copyright 2023 American Geophysical Union (AGU).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T15:12:55.360358