Identification

Title

Fortran coarray implementation of semi-Lagrangian convected air particles within an atmospheric model

Abstract

This work added semi-Lagrangian convected air particles to the Intermediate Complexity Atmospheric Research (ICAR) model. The ICAR model is a simplified atmospheric model using quasi-dynamical downscaling to gain performance over more traditional atmospheric models. The ICAR model uses Fortran coarrays to split the domain amongst images and handle the halo region communication of the image's boundary regions. The newly implemented convected air particles use trilinear interpolation to compute initial properties from the Eulerian domain and calculate humidity and buoyancy forces as the model runs. This paper investigated the performance cost and scaling attributes of executing unsaturated and saturated air particles versus the original particle-less model. An in-depth analysis was done on the communication patterns and performance of the semi-Lagrangian air particles, as well as the performance cost of a variety of initial conditions such as wind speed and saturation mixing ratios. This study found that given a linear increase in the number of particles communicated, there is an initial decrease in performance, but that it then levels out, indicating that over the runtime of the model, there is an initial cost of particle communication, but that the computational benefits quickly offset it. The study provided insight into the number of processors required to amortize the additional computational cost of the air particles.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72z18p2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-05-06T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:15:31.566397

Metadata language

eng; USA