Identification

Title

Enhancing urban thermal environment and energy sustainability with temperature‐adaptive radiative roofs

Abstract

Urban overheating presents significant challenges to public health and energy sustainability. Conventional radiative cooling strategies, such as cool roofs with high albedo, lead to undesired winter cooling and increased space heating demand for cities with cold winters, a phenomenon known as heating energy penalty. A novel roof coating with high albedo and temperature‐adaptive emissivity (TAE)—low emissivity during cold conditions and high emissivity during hot conditions—has the potential to mitigate winter heating energy penalty. In this study, we implement this roof coating in a global climate model to evaluate its impact on air temperature and building energy demand for space heating and cooling in global cities. Adopting roofs with TAE increases global urban air temperature by up to +0.54°C in the winter (99th percentile; mean change +0.16°C) but has negligible effects on summer urban air temperature (mean change +0.05°C). Combining TAE with high albedo effectively provides summer cooling and does not increase building energy demand in the winter, particularly for mid‐latitude cities. Sensitivities of air temperature to changes in emissivity and albedo are associated with local “apparent” net longwave radiation and incoming solar radiation, respectively. We propose a simple parameterization of air temperature responses to emissivity and albedo to facilitate the development of city‐specific radiative mitigation strategies. This study emphasizes the necessity of developing mitigation approaches specific to local cloudiness.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7ns107g

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:55:12.047738

Metadata language

eng; USA