Identification

Title

Causes and consequences of magnetic complexity changes within interplanetary coronal mass ejections: A statistical study

Abstract

We present the first statistical analysis of complexity changes affecting the magnetic structure of interplanetary coronal mass ejections (ICMEs), with the aim of answering the questions: How frequently do ICMEs undergo magnetic complexity changes during propagation? What are the causes of such changes? Do the in situ properties of ICMEs differ depending on whether they exhibit complexity changes? We consider multispacecraft observations of 31 ICMEs by MESSENGER, Venus Express, ACE, and STEREO between 2008 and 2014 while radially aligned. By analyzing their magnetic properties at the inner and outer spacecraft, we identify complexity changes that manifest as fundamental alterations or significant reorientations of the ICME. Plasma and suprathermal electron data at 1 au, and simulations of the solar wind enable us to reconstruct the propagation scenario for each event, and to identify critical factors controlling their evolution. Results show that similar to 65% of ICMEs change their complexity between Mercury and 1 au and that interaction with multiple large-scale solar wind structures is the driver of these changes. Furthermore, 71% of ICMEs observed at large radial (>0.4 au) but small longitudinal (<15 degrees) separations exhibit complexity changes, indicating that propagation over large distances strongly affects ICMEs. Results also suggest that ICMEs may be magnetically coherent over angular scales of at least 15 degrees, supporting earlier theoretical and observational estimates. This work presents statistical evidence that magnetic complexity changes are consequences of ICME interactions with large-scale solar wind structures, rather than intrinsic to ICME evolution, and that such changes are only partly identifiable from in situ measurements at 1 au.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7zk5m92

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:33:07.126652

Metadata language

eng; USA