Identification

Title

(Re)Conceptualizing trustworthy AI: A foundation for change

Abstract

<p><span style="-webkit-text-stroke-width:0px;color:rgb(31, 31, 31);display:inline !important;float:none;font-family:ElsevierGulliver, Georgia, &quot;Times New Roman&quot;, Times, STIXGeneral, &quot;Cambria Math&quot;, &quot;Lucida Sans Unicode&quot;, &quot;Microsoft Sans Serif&quot;, &quot;Segoe UI Symbol&quot;, &quot;Arial Unicode MS&quot;, serif, sans-serif;font-size:16px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">Developers and academics have grown increasingly interested in developing “trustworthy” artificial intelligence (AI). However, this aim is difficult to achieve in practice, especially given trust and trustworthiness are complex, multifaceted concepts that cannot be completely guaranteed nor built entirely into an AI system. We have drawn on the breadth of trust-related literature across multiple disciplines and fields to synthesize knowledge pertaining to interpersonal trust, trust in automation, and risk and trust. Based on this review we have (re)conceptualized trustworthiness in practice as being both (a) perceptual, meaning that a user assesses whether, when, and to what extent AI model output is trustworthy, even if it has been developed in adherence to AI trustworthiness standards, and (b) context-dependent, meaning that a user's perceived trustworthiness and use of an AI model can vary based on the specifics of their situation (e.g., time-pressures for decision-making, high-stakes decisions). We provide our reconceptualization to nuance how trustworthiness is thought about, studied, and evaluated by the AI community in ways that are more aligned with past theoretical research.</span></p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7m3315j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:47:02.464056

Metadata language

eng; USA