On the role of "vortical" hot towers in the formation of tropical cyclone Diana (1984)
A high-resolution (3-km horizontal grid spacing) near-cloud-resolving numerical simulation of the formation of Hurricane Diana (1984) is used to examine the contribution of deep convective processes to tropical cyclone formation. This study is focused on the 3-km horizontal grid spacing simulation because this simulation was previously found to furnish an accurate forecast of the later stages of the observed storm life cycle. The numerical simulation reveals the presence of vortical hot towers, or cores of deep cumulonimbus convection possessing strong vertical vorticity, that arise from buoyancy-induced stretching of local absolute vertical vorticity in a vorticity-rich prehurricane environment. At near-cloud-resolving scales, these vortical hot towers are the preferred mode of convection. They are demonstrated to be the most important influence to the formation of the tropical storm via a two-stage evolutionary process: (i) preconditioning of the local environment via diabatic production of multiple small-scale lower-tropospheric cyclonic potential vorticity (PV) anomalies, and (ii) multiple mergers and axisymmetrization of these low-level PV anomalies. The local warm-core formation and tangential momentum spinup are shown to be dominated by the organizational process of the diabatically generated PV anomalies; the former process being accomplished by the strong vertical vorticity in the hot tower cores, which effectively traps the latent heat from moist convection. In addition to the organizational process of the PV anomalies, the cyclogenesis is enhanced by the aggregate diabatic heating associated with the vortical hot towers, which produces a net influx of low-level mean angular momentum throughout the genesis. Simpler models are examined to elucidate the underlying dynamics of tropical cyclogenesis in this case study. Using the Sawyer-Eliassen balanced vortex model to diagnose the macroscale evolution, the cyclogenesis of Diana is demonstrated to proceed in approximate gradient and hydrostatic balance at many instances, where local radial and vertical accelerations are small. Using a shallow water primitive equation model, a characteristic "moist" (diabatic) vortex merger in the cloud-resolving numerical simulation is captured in a large part by the barotropic model. Since a moist merger results in a stronger vortex and occurs twice as fast as a dry merger, it is inferred (consistent with related work) that a net low-level convergence can accelerate and intensify the merger process in the real atmosphere. Although the findings reported herein are based on a sole case study and thus cannot yet be generalized, it is believed the results are sufficiently interesting to warrant further idealized simulations of this nature.
document
http://n2t.net/ark:/85065/d7st7r5j
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2004-06-01T00:00:00Z
Copyright 2004 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC ยง108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:03:54.337034