Identification

Title

Land use and land cover change strongly modulates land‐atmosphere coupling and warm‐season precipitation over the central United States in CESM2‐VR

Abstract

Prior research indicates that land use and land cover change (LULCC) in the central United States has led to significant changes in surface climate. The spatial resolution of simulations is particularly relevant in this region due to its influence on model skill in capturing mesoscale convective systems (MCSs) and on representing the spatial heterogeneity. Recent advances in Earth system models (ESMs) make it feasible to use variable resolution (VR) meshes to study regional impacts of LULCC while avoiding inconsistencies introduced by lateral boundary conditions typically seen in limited area models. Here, we present numerical experiments using the Community Earth System Model version 2-VR to evaluate (1) the influence of resolution and land use on model skill and (2) impacts of LULCC over the central United States at different resolutions. These simulations are configured either on the 1 degrees grid or a VR grid with grid refinement to 1/8 degrees over the contiguous United States for the period of 1984-2010 with two alternative land use data sets corresponding to the preindustrial and present day states. Our results show that skill in simulating precipitation over the central United States is primarily dependent on resolution, whereas skill in simulating 2-m temperature is more dependent on accurate land use. The VR experiments show stronger LULCC-induced precipitation increases over the Midwest in May and June, corresponding to an increase in the number of MCS-like features and a more conductive thermodynamic environment for convection. Our study demonstrates the potential of using VR ESMs for hydroclimatic simulations in regions with significant LULCC.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h1358x

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-09-18T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:14:06.290578

Metadata language

eng; USA