Identification

Title

Algorithm for determining the statistical properties of cloud particles through in situ ensemble measurements

Abstract

An algorithm is described for inverting individual particle properties from statistics of ensemble observations, thereby dispelling the notion that coincident particles create inherently erroneous data in particle probes. The algorithm assumes that the observed property obeys superposition, that the particles are independently randomly distributed in space, and that the particle distribution is stationary over the accumulation distance. The fundamental principle of the algorithm is based on a derived analytical relationship between ensemble and individual particle statistics with fully defined derivatives. This enables rapid convergence of forward inversions. Furthermore, this relationship has no dependence on the particular instrument realization, so the accuracy of the relationship is not fundamentally constrained by the accuracy to which a measurement system can be characterized or modeled. This algorithm is presented in terms of a single observed property, but the derivation is valid for correlated multiparameter retrievals. Because data are collected in histograms, this technique would require relatively little storage and network bandwidth on an aircraft data system. This statistical analysis is derived here for measuring particle geometric extinction cross sections, but it could also be applied to other particle properties, such as scattering cross-section and phase matrix elements. In this example application, a simulated beam passes through a sampled environment onto a single detector to periodically measure beam extinction. This measured extinction may be the result of one or more particles, but it is shown that the probability distribution function of the ensemble (multiparticle) extinction measurement can be used to obtain the distribution of individual particle extinction cross sections (used here as a proxy for particle size distribution).

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7t72k34

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:25:41.132515

Metadata language

eng; USA