Identification

Title

Improvements to the Community Land Model and their impact on the hydrological cycle

Abstract

The Community Land Model version 3 (CLM3) is the land component of the Community Climate System Model (CCSM). CLM3 has energy and water biases resulting from deficiencies in some of its canopy and soil parameterizations related to hydrological processes. Recent research by the community that utilizes CLM3 and the family of CCSM models has indicated several promising approaches to alleviating these biases. This paper describes the implementation of a selected set of these parameterizations and their effects on the simulated hydrological cycle. The modifications consist of surface data sets based on Moderate Resolution Imaging Spectroradiometer products, new parameterizations for canopy integration, canopy interception, frozen soil, soil water availability, and soil evaporation, a TOPMODEL-based model for surface and subsurface runoff, a groundwater model for determining water table depth, and the introduction of a factor to simulate nitrogen limitation on plant productivity. The results from a set of offline simulations were compared with observed data for runoff, river discharge, soil moisture, and total water storage to assess the performance of the new model (referred to as CLM3.5). CLM3.5 exhibits significant improvements in its partitioning of global evapotranspiration (ET) which result in wetter soils, less plant water stress, increased transpiration and photosynthesis, and an improved annual cycle of total water storage. Phase and amplitude of the runoff annual cycle is generally improved. Dramatic improvements in vegetation biogeography result when CLM3.5 is coupled to a dynamic global vegetation model. Lower than observed soil moisture variability in the rooting zone is noted as a remaining deficiency.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d75t3kp3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-03-12T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:59:16.549834

Metadata language

eng; USA