Identification

Title

Reduced viscosity steadily weakens oceanic currents

Abstract

The viscosity of both air and water is temperature dependent. A rising temperature leads to an increased viscosity for air but a decreased viscosity for water. As climate becomes warmer, this increased air viscosity can partly inhibit the reduction of wind stress over the ocean, and the reduced water viscosity causes less downward momentum and heat transport. As these opposing effects of warming on air and water viscosity are not included in the state-of-the-art climate models, the understanding of their potential impacts on the response of the climate system to the anthropogenic warming is lacking. Here, via analyzing the Simple Ocean Data Assimilation oceanic reanalysis dataset, we show that the ocean heat content increases at a rate of similar to 1.3 x 10(22) J/yr over 35 years, which leads to a continuous reduction of oceanic viscosity. As a result, the ocean vertical shear enhances with a shoaling of the mixed layer depth and a reduced vertical linkage in the ocean. Our calculations show a reduction of the oceanic kinetic energy at a rate of similar to 2.4 x 10(16) J/yr. Potentially, this could generate far-reaching impacts on the energy storage of the climate system and, hence, could pace the global warming. Thus, it is important to include the temperature-dependent viscosity in our climate models. Freshwater discharged from polar ice sheets and mountain glaciers also contributes to the reduction in oceanic viscosity but, at present, to a lesser extent than that in oceanic warming. Reduced oceanic viscosity, therefore, is an important, but hitherto overlooked, response to a warming climate and contributes to many recent weather extremes including heavier rainfall rates in hurricanes, slackening of the polar vortex, and oceanic heat waves.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d73t9n86

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-08-22T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:15:24.285187

Metadata language

eng; USA