Diagnosis of the marine low cloud simulation in the NCAR community earth system model (CESM) and the NCEP global forecast system (GFS)-modular ocean model v4 (MOM4) coupled model
We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere–ocean models: the National Center for Atmospheric Research community earth system model version 1 (CESM1) and the National Center for Environmental Predictions global forecasting system-modular ocean model version 4 (GFS-MOM4) coupled model. In the CESM1, the coastal stratocumulus (Sc)-topped planetary boundary layers (PBLs) in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow cumulus (Cu) is too abrupt and occurs too close to the coast. By contrast, in the GFS-MOM4 the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is "delayed" and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between these differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.
document
https://n2t.org/ark:/85065/d7hx1dnz
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-08-01T00:00:00Z
Copyright 2014 Springer.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-12T00:06:47.620688