Identification

Title

Emergent constraints on the large scale atmospheric circulation and regional hydroclimate: do they still work in CMIP6 and how much can they actually constrain the future?

Abstract

An emergent constraint (EC) is a statistical relationship, across a model ensemble, between a measurable aspect of the present-day climate (the predictor) and an aspect of future projected climate change (the predictand). If such a relationship is robust and understood, it may provide constrained projections for the real world. Here, models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) are used to revisit several ECs that were proposed in prior model intercomparisons with two aims: 1) to assess whether these ECs survive the partial out-of-sample test of CMIP6 and 2) to more rigorously quantify the constrained projected change than previous studies. To achieve the latter, methods are proposed whereby uncertainties can be appropriately accounted for, including the influence of internal variability, uncertainty on the linear relationship, and the uncertainty associated with model structural differences, aside from those described by the EC. Both least squares regression and a Bayesian hierarchical model are used. Three ECs are assessed: (i) the relationship between Southern Hemisphere jet latitude and projected jet shift, which is found to be a robust and quantitatively useful constraint on future projections; (ii) the relationship between stationary wave amplitude in the Pacific-North American sector and meridional wind changes over North America (with extensions to hydroclimate), which is found to be robust but improvements in the predictor in CMIP6 result in it no longer substantially constraining projected change in either circulation or hydroclimate; and (iii) the relationship between ENSO teleconnections to California and California precipitation change, which does not appear to be robust when using historical ENSO teleconnections as the predictor.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71g0qqc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:29:29.028998

Metadata language

eng; USA