Updraft and downdraft core size and intensity as revealed by radar wind profilers: MCS observations and idealized model comparisons
This study explores the updraft and downdraft properties of mature stage mesoscale convective systems (MCSs) in terms of draft core width, shape, intensity, and mass flux characteristics. The observations use extended radar wind profiler (RWP) and surveillance radar data sets from the U.S. Department of Energy Atmospheric Radiation Measurement program for midlatitude (Oklahoma, USA) and tropical (Amazon, Brazil) sites. MCS drafts behave qualitatively similar to previous aircraft and RWP cloud summaries. The Oklahoma MCSs indicate larger and more intense convective updraft and downdraft cores, and greater mass flux than Amazon MCS counterparts. However, similar size-intensity relationships and draft vertical profile behaviors are observed for both regions. Additional similarities include weak positive correlations between core intensity and core width (correlation coefficient r similar to 0.5) and increases in draft intensity with altitude. A model-observational intercomparison for draft properties (core width, intensity, and mass flux) is also performed to illustrate the potential usefulness of statistical observed draft characterizations. Idealized simulations with the Weather Research and Forecasting model aligned with midlatitude MCS conditions are performed at model grid spacings (Delta x) that range from 4 km to 250 m. It is shown that the simulations performed at Delta x = 250 m at similar mature MCS lifecycle stages are those that exhibit draft intensity, width, mass flux, and shape parameter performances best matching with observed properties.
document
http://n2t.net/ark:/85065/d7pr8073
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2020-06-16T00:00:00Z
Copyright 2020 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:13:36.742544