Identification

Title

Unveiling the combined effects of neutral dynamics and electrodynamic forcing on dayside ionosphere during the 3–4 February 2022 "SpaceX" geomagnetic storms

Abstract

Geomagnetic storms of G1-class were observed on 3 and 4 February 2022, which caused the loss of 38 out of 49 SpaceX satellites during their launch due to enhanced neutral density. The effects of storm-time neutral dynamics and electrodynamics over the American sector during this minor storm have been investigated using Global Positioning System-total electron content (TEC) and Global-scale Observations of the Limb and Disk (GOLD) mission measured thermospheric composition and temperature. Results revealed an unexpected feature in terms of increase in O/N-2 and depletion in TEC over the American low-latitudes. This feature is in addition to the classic storm time ionospheric variations of enhancement in ionospheric electron density in presence of enhanced O/N-2 and an intense equatorial electrojet (EEJ). Further, significant morning-noon electron density reductions were observed over the southern mid-high latitudes along the American longitudes. Results from Multiscale Atmosphere-Geospace Environment (MAGE) model simulations elucidated storm-induced equatorward thermospheric wind which caused the strong morning counter electrojet by generating the disturbance dynamo electric field. This further explains the morning TEC depletion at low-latitudes despite an increase in O/N-2. Sub-storm related magnetospheric convection resulted in significant noon-time peak in EEJ on 4 February. Observation and modelling approaches together suggested that combined effects of storm-time neutral dynamic and electrodynamic forcing resulted in significant ionospheric variations over the American sector during minor geomagnetic storms.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7833x4r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-11-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:13:00.415736

Metadata language

eng; USA