Identification

Title

Numerical aspects of applying the fluctuation dissipation theorem to study climate system sensitivity to external forcings

Abstract

The fluctuation dissipation theorem (FDT), a classical result coming from statistical mechanics, suggests that, under certain conditions, the system response to external forcing can be obtained using the statistics of natural fluctuation of the system. The application of the FDT to the most sophisticated climate models and the real climate system represents a difficult problem due to the huge dimensionality of these systems and the lack of the data available for proper sampling of the system natural variability. As a con sequence, one has to use some regularization procedures constraining the form of permitted perturbations. Naturally, the skill of the FDT depends on the type and parameters of the regularization procedure. In the present paper we apply FDT to predict the response of a recent version of the NCAR climate system model (CCSM4) to salinity and temperature forcing anomalies in the North Atlantic. We study the sensitivity of our results to the amount of available data and to key parameters used in our numerical algorithm.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7bz67tt

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 by Walter de Gruyter GmbH.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T20:52:21.646618

Metadata language

eng; USA