Identification

Title

Effects of weather conditions on the public demand for weather information via smartphone in multiple regions of China

Abstract

Understanding when weather information is required by the public is essential for evaluating and improving user-oriented weather services. Because of the popularity of smartphones, most people can easily access weather information via smartphone applications. In this study, we analyzed usage data for the Moji Weather smartphone application in 2017 and 2018 and devised a demand index to determine how often the weather information was used by the public under different weather conditions. Using hourly observations of surface temperature, wind intensity, precipitation, and visibility, we quantified the relationship between the demand for weather information and weather conditions in different regions of China. In general, the demand index increased with increases in local hourly precipitation or surface wind intensity in all regions; however, there were notable regional differences in the increasing trends. Extreme hot weather was found to increase the demand index in Northern China, Xinjiang, and the Sichuan Basin while in Southern China it increased more in response to extreme cold weather. We quantified the relationships between the demand index and weather conditions by performing a polynomial regression analysis for each weather element and region. The high-demand thresholds were found to vary among regions, suggesting the need for customized weather services for users in different geographical regions. The study also revealed the contribution of weather warnings to weather information demand in two megacities and showed that warnings were effective for conveying information about weather-related risks.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75b06cj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:28.236283

Metadata language

eng; USA