When is a trend meaningful? Insights to carbon cycle variability from an initial-condition large ensemble
<p><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(34, 34, 34);display:inline !important;float:none;font-family:-apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif;font-size:18px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">Internal climate variability (ICV) creates a range of climate trajectories, which are superimposed upon the forced response. A single climate model realization may not represent forced change alone and may diverge from other realizations, as well as observations, due to ICV. We use an initial-condition large ensemble of simulations with the Community Earth System Model (CESM2) to show that ICV produces a range of outcomes in the terrestrial carbon cycle. Trends in gross primary production (GPP) from 1991 to 2020 differ among ensemble members due to the different climate trajectories resulting from ICV. We quantify how ICV imparts on GPP trends and apply our methodology to the observational record. Observed changes in GPP at two long-running eddy covariance flux towers are consistent with ICV, challenging the understanding of forced changes in the carbon cycle at these locations. A probabilistic framework that accounts for ICV is needed to interpret carbon cycle trends.</span></p>
document
https://n2t.net/ark:/85065/d75143kd
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2024-12-01T00:00:00Z
<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-10T19:56:58.596310