Identification

Title

Linking global changes of snowfall and wet-bulb temperature

Abstract

Snowfall is one of the primary drivers of the global cryosphere and is declining in many regions of the world with widespread hydrological and ecological consequences. Previous studies have shown that the probability of snowfall occurrence is well described by wet-bulb temperatures below 1 degrees C (1.1 degrees C) over land (ocean). Using this relationship, wet-bulb temperatures from three reanalysis products as well as multisatellite and reanalysis precipitation data are analyzed from 1979 to 2017 to study changes in potential snowfall areas, snowfall-to-rainfall transition latitude, snowfall amount, and snowfall-to-precipitation ratio (SPR). Results are presented at hemispheric scales, as well as for three Koppen-Geiger climate classes and four major mountainous regions including the Alps, the western United States, High Mountain Asia (HMA), and the Andes. In all reanalysis products, while changes in the wet-bulb temperature over the Southern Hemisphere are mostly insignificant, significant positive trends are observed over the Northern Hemisphere (NH). Significant reductions are observed in annual-mean potential snowfall areas over NH land (ocean) by 0.52 (0.34) million km(2) decade(-1) due to an increase of 0.34 degrees C (0.35 degrees C) decade(-1) in wet-bulb temperature. The fastest retreat in NH transition latitudes is observed over Europe and central Asia at 0.7 degrees and 0.45 degrees decade(-1). Among mountainous regions, the largest decline in potential snowfall areas is observed over the Alps at 3.64% decade(-1) followed by the western United States at 2.81% and HMA at 1.85% decade(-1). This maximum decrease over the Alps is associated with significant reductions in annual snowfall of 20 mm decade(-1) and SPR of 2% decade(-1).

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d74x5bz8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:09:02.257664

Metadata language

eng; USA