Identification

Title

A variational method for sea ice ridging in Earth system models

Abstract

We have derived an analytic form of the thickness redistribution function, Psi, and compressive strength of sea ice using variational principles. By using the technique of coarse-graining vertical sea ice deformation, or ridging, in the momentum equation of the pack, we isolate frictional energy loss from potential energy gain in the collision of floes. The method accounts for macroporosity of ridge rubble, phi(R), and by including this in the state space of the pack, we expand the sea ice thickness distribution, g(h), to a bivariate distribution, g(h,phi(R)). The effect of macroporosity is for the first time included in the large-scale mass conservation and momentum equations of frozen oceans. We make assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the coarse-grained ridge model is highly predictive of macroporosity and ridge shape. By ensuring that vertical sea ice deformation observes a variational principle both at the scale of individual ridges and over the pack as a whole, we can predict distributions of ridge shapes using equations that can be solved in Earth system models. Our method also offers the possibility of more accurate derivations of sea ice thickness from ice freeboard measured by space-borne altimeters over polar oceans.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77w6g8x

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-03-23T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:26:47.836530

Metadata language

eng; USA