On the role of heterogeneous chemistry in ozone depletion and recovery
We demonstrate that identification of stratospheric ozone changes attributable to ozone depleting substances and actions taken under the Montreal Protocol requires evaluation of confounding influences from volcanic eruptions. Using a state-of-the-art chemistry-climate model, we show that increased stratospheric aerosol loading from volcanic eruptions after 2004 impeded the rate of ozone recovery post-2000. In contrast, eruptions increased ozone loss rates over the depletion era from 1980 to 1998. We also present calculations without any aerosol chemistry to isolate contributions from gas-phase chemistry alone. This study reinforces the need for accurate information regarding stratospheric aerosol loading when modeling ozone changes, particularly for the challenging task of accurately identifying the early signs of ozone healing distinct from other sources of variability.
document
https://n2t.org/ark:/85065/d76q213r
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2018-08-16T00:00:00Z
Copyright 2018 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T19:36:07.723305