Identification

Title

Incremental analysis update (IAU) in the Model for Prediction Across Scales coupled with the Joint Effort for Data assimilation Integration (MPAS–JEDI 2.0.0)

Abstract

In a cycling system where data assimilation (DA) and model simulation are executed consecutively, the model forecasts initialized from the analysis (or data assimilation) can be systematically affected by dynamic imbalances generated during the analysis process. The high-frequency noise arising from the imbalances in the initial conditions can impose constraints on computational stability and efficiency during subsequent model simulations and can potentially become the low-frequency waves of physical significance. To mitigate these initial imbalances, the incremental analysis update (IAU) has long been utilized in the cycling context. This study introduces our recent implementation of the IAU in the Model for Prediction Across Scales - Atmospheric (MPAS-A) coupled with the Joint Effort for Data assimilation Integration (JEDI) through the cycling system called MPAS-Workflow. During the integration of the compressible nonhydrostatic equations in MPAS-A, analysis increments are distributed over a predefined time window (e.g., 6 h) as fractional forcing at each time step. In a real case study with the assimilation of all conventional and satellite radiance observations every 6 h for 1 month, starting from mid-April 2018, model forecasts with the IAU show that the initial noise illustrated by surface pressure tendency becomes well constrained throughout the forecast lead times, enhancing the system reliability. The month-long cycling with the assimilation of real observations demonstrates the successful implementation of the IAU capability in the MPAS-JEDI cycling system. Along with the comparison between the forecasts with and without the IAU, several aspects regarding the implementation in MPAS-JEDI are discussed. Corresponding updates have been incorporated into the MPAS-A model (originally based on version 7.1), which is now publicly available in MPAS-JEDI and MPAS-Workflow version 2.0.0.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72v2mb2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-05-23T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:02:02.695075

Metadata language

eng; USA