The impact of gradient wind imbalance on potential intensity of tropical cyclones in an unbalanced slab boundary layer model
The assumption of gradient wind balance is customarily made so as to derive the theoretical upper-bound intensity of a mature tropical cyclone. Emanuel's theory of hurricane potential intensity (E-PI) makes use of this assumption, whereas more recent studies by Bryan and Rotunno demonstrate that the effect of unbalanced flow can result in maximum winds that are well in excess of E-PI (superintensity). The existence of supergradient winds has been verified in a slab boundary layer model developed by Smith. Here, the authors apply the slab boundary layer model within the framework of classical E-PI theory to investigate the sensitivity of supergradient winds to the radius of maximum gradient wind (RMGW) and four nondimensional model parameters. The authors find that the Rossby number, the drag coefficient, and the modified Rankine decay parameter all have a considerable influence on the strength of the unbalanced flow. In contrast, the ratio of surface exchange coefficients has little noticeable effect on superintensity. The inclusion of horizontal momentum diffusion leads to a weaker superintensity, but the qualitative features of the model remain similar. To further elucidate these findings, the authors use the boundary layer model to examine the modified E-PI theory proposed by Emanuel and Rotunno. They assume a constant Richardson number for the outflow. The boundary layer model driven by the modified E-PI solution depends on just three model parameters rather than the four parameters used in the classical E-PI framework. Despite this apparent advantage, the results obtained in the framework of the modified E-PI are less realistic than those computed with the classical E-PI approach.
document
https://n2t.org/ark:/85065/d7gf0vc7
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-07-01T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-15T21:26:37.016285