A new generic method for quantifying the scale predictability of the fractal atmosphere: Applications to model verification
The authors revisit the issue regarding the predictability of a flow that possesses many scales of motion raised by Lorenz in 1969 and apply the general systems theory developed by Selvam in 1990 to error diagnostics and the predictability of the fractal atmosphere. They then introduce a new generic method to quantify the scale predictability of the fractal atmosphere following the assumptions of the intrinsic inverse power law and the upscale cascade of error. The eddies (of all scales) are extracted against the instant zonal mean, and the ratio of noise (i.e., the domain-averaged square of error amplitudes) to signal (i.e., the domain-averaged square of total eddy amplitudes), referred to as noise-to-signal ratio (NSR), is defined as a measure of forecast skill. The time limit of predictability for any wavenumber can be determined by the criterion or by the criterion , where is the golden ratio and m is a scale index. The NSR is flow adaptive, bias aware, and stable in variation (in a logarithm transformation), and it offers unique advantages for model verification, allowing evaluation of different model variables, regimes, and scales in a consistent manner. In particular, an important advantage of this NSR method over the widely used anomaly correlation coefficient (ACC) method is that it could detect the successive scale predictability of different wavenumbers without the need to explicitly perform scale decomposition. As a demonstration, this new NSR method is used to examine the scale predictability of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 500-hPa geopotential height.
document
http://n2t.net/ark:/85065/d75h7hfj
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-04-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:42:53.849732