Identification

Title

Convection initiation during the Meiyu environment in the Yangtze�Huai River Basin of China

Abstract

Convection is the main contributor to heavy rainfall over China's Yangtze-Huai River Basin (YHRB) during Meiyu season; however, the mechanisms of convection initiation (CI) associated with the Meiyu front are still not well understood. In this study, a large set of 86,099 CI events, identified from composite reflectivity data in YHRB over six Meiyu seasons, were used to investigate the characteristics of the spatiotemporal distribution of CI in YHRB. The result showed that the overwhelming majority of CI events (similar to 90%) occurred in the region of existing stratiform clouds. Meanwhile, CI tended to concentrate in mountainous areas and exhibited two triggering modes. By relating the CI events with an objective analysis of ERA5 reanalysis data, it was also revealed that the characteristics of CI occurrence varied with patterns of Meiyu circulation and their interactions with local topography, and the warm air advection pattern dominated the Meiyu CI. We further illustrated that CI on the plains occurred with a morning peak corresponding to environments of high 0-3 km shear (SHR3) and low most unstable convective available potential energy (MUCAPE), while the CI near or over mountains had an afternoon peak corresponding to low SHR3 and high MUCAPE environments.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7br8x58

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-05-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:27:06.553890

Metadata language

eng; USA