Identification

Title

Toward understanding parametric controls on runoff sensitivity to climate in the Community Land Model: A case study over the Colorado River headwaters

Abstract

Crucial to the assessment of future water security is how the land model component of Earth System Models partition precipitation into evapotranspiration and runoff, and the sensitivity of this partitioning to climate. This sensitivity is not explicitly constrained in land models nor the model parameters important for this sensitivity identified. Here, we seek to understand parametric controls on runoff sensitivity to precipitation and temperature in a state‐of‐the‐science land model, the Community Land Model version 5 (CLM5). Process‐parameter interactions underlying these two climate sensitivities are investigated using the sophisticated variance‐based sensitivity analysis. This analysis focuses on three snow‐dominated basins in the Colorado River headwaters region, a prominent exemplar where land models display a wide disparity in runoff sensitivities. Runoff sensitivities are dominated by indirect or interaction effects between a few parameters of subsurface, snow, and plant processes. A focus on only one kind of parameters would therefore limit the ability to constrain the others. Surface runoff exhibits strong sensitivity to parameters of snow and subsurface processes. Constraining snow simulations would require explicit representation of the spatial variability across large elevation gradients. Subsurface runoff and soil evaporation exhibit very similar sensitivities. Model calibration against the subsurface runoff flux would therefore constrain soil evaporation. The push toward a mechanistic treatment of processes in CLM5 have dampened the sensitivity of parameters compared to earlier model versions. A focus on the sensitive parameters and processes identified here can help characterize and reduce uncertainty in water resource sensitivity to climate change.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7rx9hct

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:56:47.075459

Metadata language

eng; USA