Identification

Title

Temperature-moisture dependence of the deep convective transition as a constraint on entrainment in climate models

Abstract

Properties of the transition to strong deep convection, as previously observed in satellite precipitation statistics, are analyzed using parcel stability computations and a convective plume velocity equation. A set of alternative entrainment assumptions yields very different characteristics of the deep convection onset boundary (here measured by conditional instability and plume vertical velocity) in a bulk temperature--water vapor thermodynamic plane. In observations the threshold value of column water vapor above which there is a rapid increase in precipitation, referred to as the critical value, increases with temperature, but not as quickly as column saturation, and this can be matched only for cases with sufficiently strong entrainment. This corroborates the earlier hypothesis that entraining plumes can explain this feature seen in observations, and it places bounds on the lower-tropospheric entrainment. Examination of a simple interactive entrainment scheme in which a minimum turbulent entrainment is enhanced by a dynamic entrainment (associated with buoyancy-induced vertical acceleration) shows that the deep convection onset curve is governed by the prescribed minimum entrainment. Results from a 0.5° resolution version of the Community Climate System Model, whose convective parameterization includes substantial entrainment, yield a reasonable match to satellite observations in several respects. Temperature--water vapor dependence is seen to agree well with the plume calculations and with offline simulations performed using the convection scheme of the model. These findings suggest that the convective transition characteristics, including the onset curve in the temperature--water vapor plane, can provide a substantial constraint for entrainment assumptions used in climate model deep convective parameterizations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rf5vpn

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:53:11.790632

Metadata language

eng; USA