Identification

Title

Tropical rainfall predictions from multiple seasonal forecast systems

Abstract

We quantify seasonal prediction skill of tropical winter rainfall in 14 climate forecast systems. High levels of seasonal prediction skill exist for year-to-year rainfall variability in all tropical ocean basins. The tropical East Pacific is the most skilful region, with very high correlation scores, and the tropical West Pacific is also highly skilful. Predictions of tropical Atlantic and Indian Ocean rainfall show lower but statistically significant scores. We compare prediction skill (measured against observed variability) with model predictability (using single forecasts as surrogate observations). Model predictability matches prediction skill in some regions but it is generally greater, especially over the Indian Ocean. We also find significant inter-basin connections in both observed and predicted rainfall. Teleconnections between basins due to El Nino-Southern Oscillation (ENSO) appear to be reproduced in multi-model predictions and are responsible for much of the prediction skill. They also explain the relative magnitude of inter-annual variability, the relative magnitude of predictable rainfall signals and the ranking of prediction skill across different basins. These seasonal tropical rainfall predictions exhibit a severe wet bias, often in excess of 20% of mean rainfall. However, we find little direct relationship between bias and prediction skill. Our results suggest that future prediction systems would be best improved through better model representation of inter-basin rainfall connections as these are strongly related to prediction skill, particularly in the Indian and West Pacific regions. Finally, we show that predictions of tropical rainfall alone can generate highly skilful forecasts of the main modes of extratropical circulation via linear relationships that might provide a useful tool to interpret real-time forecasts.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7w380br

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-10-07T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Crown copyright, Met Office Weather Copyright 2018 Royal Meteorological Society. This work is licensed as open access under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:17:54.142532

Metadata language

eng; USA