Identification

Title

Estimating the meridional extent of adiabatic mixing in the stratosphere using age-of-air

Abstract

Wave-induced adiabatic mixing in the winter midlatitudes is one of the key processes impacting stratospheric transport. Understanding its strength and structure is vital to understanding the distribution of trace gases and their modulation under a changing climate. Age-of-air is often used to understand stratospheric transport, and this study proposes refinements to the vertical age gradient theory of Linz et al. (2021), https://doi.org/10.1029/2021JD035199. The theory assumes exchange of air between a well-mixed tropics and a well-mixed extratropics, separated by a transport barrier, quantifying the adiabatic mixing flux across the interface using age-based measures. These assumptions are re-evaluated and a refined framework that includes the effects of meridional tracer gradients is established to quantify the mixing flux. This is achieved, in part, by computing a circulation streamfunction in age-potential temperature coordinates to generate a complete distribution of parcel ages being mixed in the midlatitudes. The streamfunction quantifies the "true" age of parcels mixed between the tropics and the extratropics. Applying the revised theory to an idealized and a comprehensive climate model reveals that ignoring the meridional gradients in age leads to an underestimation of the wave-driven mixing flux. Stronger, and qualitatively similar fluxes are obtained in both models, especially in the lower-to-middle stratosphere. While the meridional span of adiabatic mixing in the two models exhibits some differences, they show that the deep tropical pipe, that is, latitudes equatorward of 15 degrees barely mix with older midlatitude air. The novel age-potential temperature circulation can be used to quantify additional aspects of stratospheric transport.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7gh9nv4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-02-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:54:17.238169

Metadata language

eng; USA