Identification

Title

Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications

Abstract

An updated version of the spectral (bin) microphysics cloud model developed at the Hebrew University of Jerusalem [the Hebrew University Cloud Model (HUCM)] is described. The model microphysics is based on the solution of the equation system for size distribution functions of cloud hydrometeors of seven types (water drops, plate-, columnar-, and branch-like ice crystals, aggregates, graupel, and hail/frozen drops) as well as for the size distribution function of aerosol particles playing the role of cloud condensational nuclei (CCN). Each size distribution function contains 33 mass bins. The conditions allowing numerical reproduction of a narrow droplet spectrum up to the level of homogeneous freezing in deep convective clouds developed in smoky air are discussed and illustrated using as an example Rosenfeld and Woodley's case of deep Texas clouds. The effects of breakup on precipitation are illustrated by the use of a new collisional breakup scheme. Variation of the microphysical structure of a melting layer is illustrated by using the novel melting procedure. It is shown that an increase in the aerosol concentration leads to a decrease in precipitation from single clouds both under continental and maritime conditions. To provide similar precipitation, a cloud developed in smoky air should have a higher top height. The mechanisms are discussed through which aerosols decrease precipitation efficiency. It is shown that aerosols affect the vertical profile of the convective heating caused by latent heat release.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7xk8gvd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2004-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2004 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC ?108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:11.826238

Metadata language

eng; USA