Identification

Title

On the connection between Rieger-type and magneto-Rossby waves driving the frequency of the large solar eruptions during solar cycles 19-25

Abstract

Global solar activity variation mainly occurs over about an 11 yr cycle. However, both longer and shorter periodicities than the solar cycle are also present in many different solar activity indices. The longer timescales may be up to hundreds of years, while the shorter timescales for global solar variability could be within 0.5-2 yr, which include, e.g., from the Rieger-type periods (150-160 days) to quasi-biennial oscillations of 2 yr. The most likely origin of this short-timescale quasi-periodicity is attributed to magnetic Rossby waves, which have periods of 0.8-2.4 yr. In this work, we present findings of a unique evolution of identified shorter periodicities, like the Rieger-type, arising from magnetic Rossby waves, throughout Solar Cycles 19-25. We report further observational evidence of the strong relationship between the Rieger-type periodicity, magneto-Rossby waves, and major solar flare activity. Moreover, this study also reveals that the global solar magnetic field has a continuous periodic longitudinal conveyor belt motion along the solar equator, together with an up-and-down movement in the latitudinal directions. We found that when these longitudinal and latitudinal movements have Rieger-type periodicity and magneto-Rossby waves during the same period of a solar cycle, major flare activity is present.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7wh2tx5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:42:02.129705

Metadata language

eng; USA