Severe convective weather in the central and eastern United States: Present and future

The continental United States is a global hotspot of severe thunderstorms and therefore is particularly vulnerable to social and economic damages from high-impact severe convective weather (SCW), such as tornadoes, thunderstorm winds, and large hail. However, our knowledge of the spatiotemporal climatology and variability of SCW occurrence is still lacking, and the potential change in SCW frequency and intensity in response to anthropogenic climate warming is highly uncertain due to deficient and sparse historical records and the global and regional climate model’s inability to resolve thunderstorms. This study investigates SCW in the Central and Eastern United States in spring and early summer for the current and future warmed climate using two multi-year continental-scale convection-permitting Weather Research and Forecasting (WRF) model simulations. The pair of simulations consist of a retrospective simulation, which downscales the ERA-Interim reanalysis during October 2000–September 2013, and a future climate sensitivity simulation based on the perturbed reanalysis-derived boundary conditions with the CMIP5 ensemble-mean high-end emission scenario climate change. A proxy based on composite reflectivity and updraft helicity threshold is applied to infer the simulated SCW occurrence. Results indicate that the retrospective simulation captures reasonably well the spatial distributions and seasonal variations of the observed SCW events, with an exception of an overestimate along the Atlantic and Gulf coast. In a warmer-moister future, most regions experience intensified SCW activity, most notably in the early-middle spring, with the largest percentage increase in the foothills and higher latitudes. In addition, a shift of simulated radar reflectivity toward higher values, in association with the significant thermodynamic environmental response to climatic warming, potentially increases the SCW severity and resultant damage.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Changhai
Ikeda, Kyoko
Rasmussen, Roy M.
Publisher UCAR/NCAR - Library
Publication Date 2024-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:56:40.359379
Metadata Record Identifier edu.ucar.opensky::articles:42673
Metadata Language eng; USA
Suggested Citation Liu, Changhai, Ikeda, Kyoko, Rasmussen, Roy M.. (2024). Severe convective weather in the central and eastern United States: Present and future. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7c53r66. Accessed 11 August 2025.

Harvest Source