Influence of local water vapor analysis uncertainty on ensemble forecasts of tropical cyclogenesis using Hurricane Irma (2017) as a testbed

Tropical cyclone formation is known to require abundant water vapor in the lower to middle troposphere within the incipient disturbance. In this study, we assess the impacts of local water vapor analysis uncertainty on the predictability of the formation of Hurricane Irma (2017). To this end, we reduce the magnitude of the incipient disturbance's water vapor perturbations obtained from an ensemble-based data assimilation system that constrained moisture by assimilating all-sky infrared and microwave radiances. Five-day ensemble forecasts are initialized two days before genesis using each set of modified analysis perturbations. Growth of convective differences and intensity uncertainty are evaluated for each ensemble forecast. We observe that when initializing an ensemble forecast with only moisture uncertainty within the incipient disturbance, the resulting intensity uncertainty at every lead time exceeds half that of an ensemble containing initial perturbations to all variables throughout the domain. Although ensembles with different initial moisture uncertainty amplitudes reveal a similar pathway to genesis, uncertainty in genesis timing varies substantially across ensembles since moister members exhibit earlier spinup of the low-level vortex. These differences in genesis timing are traced back to the first 6-12 h of integration, when differences in the position and intensity of mesoscale convective systems across ensemble members develop more quickly with greater initial moisture uncertainty. In addition, the rapid growth of intensity uncertainty may be greatly modulated by the diurnal cycle. Ultimately, this study underscores the importance of targeting the incipient disturbance with high spatiotemporal water vapor observations for ingestion into data assimilation systems.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Influence of Local Water Vapor Analysis Uncertainty on Ensemble Forecasts of Tropical Cyclogenesis Using Hurricane Irma (2017) as a Testbed

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2024 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hartman, C. M.
Judt, F.
Chen, X.
Publisher UCAR/NCAR - Library
Publication Date 2024-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:01:29.921898
Metadata Record Identifier edu.ucar.opensky::articles:27303
Metadata Language eng; USA
Suggested Citation Hartman, C. M., Judt, F., Chen, X.. (2024). Influence of local water vapor analysis uncertainty on ensemble forecasts of tropical cyclogenesis using Hurricane Irma (2017) as a testbed. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7mw2nc7. Accessed 11 August 2025.

Harvest Source