Phenology of photosynthesis in winter-dormant temperate and boreal forests: Long-term observations from flux towers and quantitative evaluation of phenology models

We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across North America and Eurasia. We quantified the onset and end (StartGPP and EndGPP) of photosynthesis in spring and autumn based on the response of net ecosystem exchange of CO2 to sunlight. To test the hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity similar to 3 weeks before end of snowmelt, while DBF forests achieved that capacity similar to 4 weeks afterward. DBF forests increased photosynthetic capacity in spring faster (1.95% d-1) than ENF (1.10% d-1), and their active season length (EndGPP-StartGPP) was similar to 50 days shorter. We hypothesized that warming has influenced timing of the photosynthesis season. We found minimal evidence for long-term change in StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer weather was associated with earlier StartGPP (1.3-2.5 days degrees C-1) or later EndGPP (1.5-1.8 days degrees C-1, depending on forest type and month). Finally, we tested whether existing phenological models could predict StartGPP and EndGPP. For ENF forests, air temperature- and daylength-based models provided best predictions for StartGPP, while a chilling-degree-day model was best for EndGPP. The root mean square errors (RMSE) between predicted and observed StartGPP and EndGPP were 11.7 and 11.3 days, respectively. For DBF forests, temperature- and daylength-based models yielded the best results (RMSE 6.3 and 10.5 days).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Bowling, D. R.
Schädel, C.
Smith, K. R.
Richardson, A. D.
Bahn, M.
Arain, M. A.
Varlagin, A.
Ouimette, A. P.
Frank, J. M.
Barr, A. G.
Mammarella, I.
Šigut, L.
Foord, V.
Burns, Sean
Montagnani, L.
Litvak, M. E.
Munger, J. W.
Ikawa, H.
Hollinger, D. Y.
Blanken, P. D.
Ueyama, M.
Matteucci, G.
Bernhofer, C.
Bohrer, G.
Iwata, H.
Ibrom, A.
Pilegaard, K.
Spittlehouse, D. L.
Kobayashi, H.
Desai, A. R.
Staebler, R. M.
Black, T. A.
Publisher UCAR/NCAR - Library
Publication Date 2024-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:02:28.351601
Metadata Record Identifier edu.ucar.opensky::articles:27194
Metadata Language eng; USA
Suggested Citation Bowling, D. R., Schädel, C., Smith, K. R., Richardson, A. D., Bahn, M., Arain, M. A., Varlagin, A., Ouimette, A. P., Frank, J. M., Barr, A. G., Mammarella, I., Šigut, L., Foord, V., Burns, Sean, Montagnani, L., Litvak, M. E., Munger, J. W., Ikawa, H., Hollinger, D. Y., Blanken, P. D., Ueyama, M., Matteucci, G., Bernhofer, C., Bohrer, G., Iwata, H., Ibrom, A., Pilegaard, K., Spittlehouse, D. L., Kobayashi, H., Desai, A. R., Staebler, R. M., Black, T. A.. (2024). Phenology of photosynthesis in winter-dormant temperate and boreal forests: Long-term observations from flux towers and quantitative evaluation of phenology models. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7qv3rqx. Accessed 11 August 2025.

Harvest Source