Using the WRF model in an operational streamflow forecast system for the Jordan River

The Weather Research and Forecasting (WRF) model was employed to provide precipitation forecasts during the 2008/09 and 2009/10 winters (wet season) for Israel and the surrounding region where complex terrain dominates. The WRF precipitation prediction has been coupled with the Hydrological Model for Karst Environment (HYMKE) to forecast the upper Jordan River streamflow. The daily WRF precipitation forecasts were verified against the measurements from a dense network of rain gauges in northern and central Israel, and the simulation results using the high-resolution WRF indicated good agreement with the actual measurements. The daily precipitation amount calculated by WRF at rain gauges located in the upper parts of the Jordan River basin showed good agreement with the actual measurements. Numerical experiments were carried out to test the impact of the WRF model resolution and WRF microphysical schemes, to determine an optimal model configuration for this application. Because of orographic forcing in the region, it is necessary to run WRF with a 4--1.3-km grid increment and with sophisticated microphysical schemes that consider liquid water, ice, snow, and graupel to produce quality precipitation predictions. The hydrological modeling system that ingests the high-resolution WRF forecast precipitation produced good results and improved upon the operational streamflow forecast method for the Jordan River that is now in use. The modeling tools presented in this study are used to support the water-resource-assessment process and studies of seasonal hydroclimatic forecasting in this region.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Givati, Amir
Lynn, Barry
Liu, Yubao
Rimmer, Alon
Publisher UCAR/NCAR - Library
Publication Date 2012-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:53:04.076172
Metadata Record Identifier edu.ucar.opensky::articles:12002
Metadata Language eng; USA
Suggested Citation Givati, Amir, Lynn, Barry, Liu, Yubao, Rimmer, Alon. (2012). Using the WRF model in an operational streamflow forecast system for the Jordan River. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d79g5nh7. Accessed 16 June 2025.

Harvest Source