Regional soil moisture biases and their influence on WRF model temperature forecasts over the Intermountain West

Operational Weather Research and Forecasting (WRF) Model forecasts run over Dugway Proving Ground (DPG) in northwest Utah, produced by the U.S. Army Test and Evaluation Command Four-Dimensional Weather System (4DWX), underpredict the amplitude of the diurnal temperature cycle during September and October. Mean afternoon [2000 UTC (1300 LST)] and early morning [1100 UTC (0400 LST)] 2-m temperature bias errors evaluated against 195 surface stations using 6- and 12-h forecasts are -1.37° and 1.66°C, respectively. Bias errors relative to soundings and 4DWX-DPG analyses illustrate that the afternoon cold bias extends from the surface to above the top of the planetary boundary layer, whereas the early morning warm bias develops in the lowest model levels and is confined to valleys and basins. These biases are largest during mostly clear conditions and are caused primarily by a regional overestimation of near-surface soil moisture in operational land surface analyses, which do not currently assimilate in situ soil moisture observations. Bias correction of these soil moisture analyses using data from 42 North American Soil Moisture Database stations throughout the Intermountain West reduces both the afternoon and early morning bias errors and improves forecasts of upper-level temperature and stability. These results illustrate that the assimilation of in situ and remotely sensed soil moisture observations, including those from the recently launched NASA Soil Moisture Active Passive (SMAP) mission, have the potential to greatly improve land surface analyses and near-surface temperature forecasts over arid regions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Massey, Jeffrey
Steenburgh, W.
Knievel, Jason
Cheng, William
Publisher UCAR/NCAR - Library
Publication Date 2016-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:12:41.807245
Metadata Record Identifier edu.ucar.opensky::articles:18070
Metadata Language eng; USA
Suggested Citation Massey, Jeffrey, Steenburgh, W., Knievel, Jason, Cheng, William. (2016). Regional soil moisture biases and their influence on WRF model temperature forecasts over the Intermountain West. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7ng4s6k. Accessed 20 June 2025.

Harvest Source