Elevation-dependent temperature response in early Eocene using paleoclimate model experiment

Mountains become warmer with elevation in response to greenhouse gas warming, an effect known as elevation-dependent warming. The Eocene is considered a replica of the future climate in an epoch with high atmospheric carbon dioxide concentration (CO2). Therefore, the topographic features of the Eocene strata are of interest. However, obtaining proxy data for mountain regions during the Eocene hothouse is challenging. Paleoclimate model simulation is an effective tool for exploring past climate change. Therefore, we conducted sensitivity experiment simulations employing the Community Earth System Model version 1.2 forced by proxy-estimated CO2 levels. This is the first Eocene study demonstrating the elevation-dependent temperature changes and illustrated using the surface energy budget decomposition. Here five major mountain ranges have been chosen based on their paleogeographic continental location. We found a nonlinear response of elevation-dependent temperature change to CO2 concentrations regulated by seasonal variations. The radiative and non-radiative feedback compensation is responsible for the elevation-dependency temperature changes. Our results suggest temperature perturbations regulate elevation-dependent changes in skin temperature through a combination of feedback under greenhouse warming in the early Eocene. These findings also show future paradox response exhibiting elevation-dependent cooling overall mountain regions due to lower elevation warming.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kad, Pratik
Blau, Manuel Tobias
Ha, Kyung-Ja
Zhu, Jiang
Publisher UCAR/NCAR - Library
Publication Date 2022-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:52.233170
Metadata Record Identifier edu.ucar.opensky::articles:25852
Metadata Language eng; USA
Suggested Citation Kad, Pratik, Blau, Manuel Tobias, Ha, Kyung-Ja, Zhu, Jiang. (2022). Elevation-dependent temperature response in early Eocene using paleoclimate model experiment. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7c53qp2. Accessed 28 June 2025.

Harvest Source