Identifying potential markers of the Sun's giant convective scale

Line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) are analyzed using a diagnostic known as the magnetic range of influence (MRoI). The MRoI is a measure of the length over which a photospheric magnetogram is balanced and so its application gives the user a sense of the connective length scales in the outer solar atmosphere. The MRoI maps and histograms inferred from the SDO/HMI magnetograms primarily exhibit four scales: a scale of a few megameters that can be associated with granulation, a scale of a few tens of megameters that can be associated with super-granulation, a scale of many hundreds to thousands of megameters that can be associated with coronal holes and active regions, and a hitherto unnoticed scale that ranges from 100 to 250 Mm. We infer that this final scale is an imprint of the (rotationally driven) giant convective scale on photospheric magnetism. This scale appears in MRoI maps as well-defined, spatially distributed concentrations that we have dubbed g-nodes. Furthermore, using coronal observations from the Atmospheric Imaging Assembly on SDO, we see that the vicinity of these g-nodes appears to be a preferred location for the formation of extreme-ultraviolet (and likely X-Ray) brightpoints. These observations and straightforward diagnostics offer the potential of a near real-time mapping of the Sun's largest convective scale, a scale that possibly reaches to the very bottom of the convective zone.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this article was published by the Institute of Physics on behalf of the American Astronomical Society. Copyright 2014 the American Astronomical Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author McIntosh, Scott
Wang, Xin
Leamon, Robert
Scherrer, Philip
Publisher UCAR/NCAR - Library
Publication Date 2014-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:07:07.028910
Metadata Record Identifier edu.ucar.opensky::articles:14003
Metadata Language eng; USA
Suggested Citation McIntosh, Scott, Wang, Xin, Leamon, Robert, Scherrer, Philip. (2014). Identifying potential markers of the Sun's giant convective scale. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qr4z27. Accessed 27 July 2025.

Harvest Source