Simulation of a North American monsoon gulf surge event and comparison to observations

Gulf surges are transient disturbances that propagate along the Gulf of California (GoC) from south to north, transporting cool moist air toward the deserts of northwest Mexico and the southwest United States during the North American monsoon. They have been shown to modulate precipitation and have been linked to severe weather and flooding in northern Mexico and the southwest United States. The general features and progression of surge events are well studied, but their detailed evolution is still unclear. To address this, several convection-permitting simulations are performed over the core monsoon region for the 12-14 July 2004 gulf surge event. This surge event occurred during the North American Monsoon Experiment, which allows for extensive comparison to field observations. A 60-h reference simulation is able to reproduce the surge event, capturing its main characteristics: speed and direction of motion, thermodynamic changes during its passage, and strong northward moisture flux. While the timing of the simulated surge is accurate to within 1-3 h, it is weaker and shallower than observed. This deficiency is likely due to a combination of weaker convection and lack of stratiform precipitation along the western slopes of the Sierra Madre Occidental than observed, hence, weaker precipitation evaporation to aid the surge. Sensitivity simulations show that convective outflow does modulate the intensity of the simulated surge, in agreement with past studies. The removal of gap flows from the Pacific Ocean across the Baja Peninsula into the GoC shows they also impact surge intensity.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Newman, Andrew
Johnson, Richard
Publisher UCAR/NCAR - Library
Publication Date 2012-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:53:24.285957
Metadata Record Identifier edu.ucar.opensky::articles:12189
Metadata Language eng; USA
Suggested Citation Newman, Andrew, Johnson, Richard. (2012). Simulation of a North American monsoon gulf surge event and comparison to observations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7vh5pjd. Accessed 28 June 2025.

Harvest Source