Statistical study of foreshock bubbles, hot flow anomalies, and spontaneous hot flow anomalies and their substructures observed by MMS

Foreshock transients such as foreshock bubbles (FBs), hot flow anomalies (HFAs), and spontaneous hot flow anomalies (SHFAs) display heated, tenuous cores and large flow deflections bounded by compressional boundaries. THEMIS and Cluster observations show that some cores contain local density enhancements which can be studied to better understand the evolution processes of foreshock transients. However, closer examinations of these substructures were not feasible until the availability of the higher resolution data from the Magnetospheric Multiscale mission (MMS). We identify 164 FB-like, HFA-like, and SHFA events from two MMS dayside phases for a statistical study to investigate their solar wind conditions, properties, and substructure properties. Occurrence rates of the three event types are higher for lower magnetic field strengths, higher solar wind speeds and Mach numbers, and quasi-parallel bow shocks. Events usually span up to 3 R-E along the bow shock surface and extend up to 6 R-E upstream from the bow shock. Though events with and without substructures exhibit similar solar wind conditions, events with substructures are more likely to have longer core durations and larger sizes. Substructure densities display a positive correlation with bulk flows and a negative correlation with temperatures. Substructure sizes vary between 4 and 24 ion inertial lengths, indicating multiple formation mechanisms. Substructures could be the boundary between two foreshock transient events that have merged into a single event, fast-mode variations, generated by slow or mirror mode instabilities, or produced from instabilities due to parameter gradients at the compressional boundaries or shocks.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Vu, Andrew
Liu, Terry Z.
Zhang, Hui
Pollock, Craig
Publisher UCAR/NCAR - Library
Publication Date 2022-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:18:05.753837
Metadata Record Identifier edu.ucar.opensky::articles:25251
Metadata Language eng; USA
Suggested Citation Vu, Andrew, Liu, Terry Z., Zhang, Hui, Pollock, Craig. (2022). Statistical study of foreshock bubbles, hot flow anomalies, and spontaneous hot flow anomalies and their substructures observed by MMS. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7bg2skz. Accessed 23 June 2025.

Harvest Source