A reanalysis system for the generation of mesoscale climatographies

The use of a mesoscale model-based four-dimensional data assimilation (FDDA) system for generating mesoscale climatographies is demonstrated. This dynamical downscaling method utilizes the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), wherein Newtonian relaxation terms in the prognostic equations continually nudge the model solution toward surface and upper-air observations. When applied to a mesoscale climatography, the system is called Climate-FDDA (CFDDA). Here, the CFDDA system is used for downscaling eastern Mediterranean climatographies for January and July. The downscaling method performance is verified by using independent observations of monthly rainfall, Quick Scatterometer (QuikSCAT) ocean-surface winds, gauge rainfall, and hourly winds from near-coastal towers. The focus is on the CFDDA system’s ability to represent the frequency distributions of atmospheric states in addition to time means. The verification of the monthly rainfall climatography shows that CFDDA captures most of the observed spatial and interannual variability, although the model tends to underestimate rainfall amounts over the sea. The frequency distributions of daily rainfall are also accurately diagnosed for various regions of the Levant, except that very light rainfall days and heavy precipitation amounts are overestimated over Lebanon. The verification of the CFDDA against QuikSCAT ocean winds illustrates an excellent general correspondence between observed and modeled winds, although the CFDDA speeds are slightly lower than those observed. Over land, CFDDA- and the ECMWF-derived wind climatographies when compared with mast observations show similar errors related to their inability to properly represent the local orography and coastline. However, the diurnal variability of the winds is better estimated by CFDDA because of its higher horizontal resolution.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hahmann, Andrea
Rostkier-Edelstein, Dorita
Warner, Thomas
Vandenberghe, Francois
Liu, Yubao
Babarsky, R.
Swerdlin, Scott
Publisher UCAR/NCAR - Library
Publication Date 2010-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:59:03.426869
Metadata Record Identifier edu.ucar.opensky::articles:17257
Metadata Language eng; USA
Suggested Citation Hahmann, Andrea, Rostkier-Edelstein, Dorita, Warner, Thomas, Vandenberghe, Francois, Liu, Yubao, Babarsky, R., Swerdlin, Scott. (2010). A reanalysis system for the generation of mesoscale climatographies. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7vh5q4f. Accessed 19 July 2025.

Harvest Source